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ABSTRACT

Many analysis algorithms for high-dimensional remote sensing
data require that the remotely sensed radiance spectra be
transformed to approximate reflectance to allow comparison with a

library of laboratory reflectance spectra. In maximum likelihood
classification, however, the remotely sensed spectra are compared

to training samples, thus a transformation to reflectance may or
may not be helpful. The effect of several radiance-to-reflectance
transformations on maximum likelihood classification accuracy is
investigated in this paper. We show that the empirical line

approach, LOWTRAN7, flat-field correction, single spectrum
method, and internal average reflectance are all non-singular affine
transformations, and that non-singular affine transformations have
no effect on discriminant analysis feature extraction and maximum
likelihood classification accuracy. (An affine transformation is a

linear transformation with an optional offset.) Since the
Atmosphere Removal Program (ATREM) and the log residue
method are not affine transformations, experiments with Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) data were
conducted to determine the effect of these transformations on
maximum likelihood classification accuracy. The average

classification accuracy of the data transformed by ATREM and the
log residue method was slightly less than the accuracy of the
original radiance data. Since the radiance-to-reflectance
transformations allow direct comparison of remotely sensed

spectra with laboratory reflectance spectra, they can be quite useful
in labeling the training samples required by maximum likelihood
classification, but these transformations have only a slight effect or
no effect at all on discriminant analysis and maximum likelihood

classification accuracy.

INTRODUCTION

Remote sensing platforms measure the up welling radiance
from the earth in several different spectral bands. In remote sensing

applications where the scientist is interested in deriving
information about the surface of the earth, it is desirable to adjust

for the variations in the measured radiance due to the solar output,
atmosphere, and sensor noise, in an attempt to only retain
variations caused by the reflectance of the material on the surface.
Several radiance-to-reflectance transformations have been

proposed that are designed to remove the effect of the solar output
and atmosphere in order to estimate the reflectance of the surface.

If an estimate of the surface reflectance is available, it may be
possible to identify some materials by comparison to laboratory
reflectance curves. We have found this approach useful in labeling
training samples for a maximum likelihood classifier when the
material has obvious spectral features (Hoffbeck et al., 1993). The
question this paper addresses is: Once the training samples have
been labeled, is it better to classify using estimates of reflectance

or the original radiance data7
In this paper, we show that the empirical line approach (Kruse

et al., 1990), LOWTRAN7 (Rast et al., 1991), flat-field correction
(Rast et al., 1991), single spectrum method (Bosch, 1990), and
internal average reflectance (Bosch, 1990) are non-singular affine
transformations, and that non-singular affine transformations have
no effect on discriminant feature extraction and maximum

likelihood classification. Furthermore, experiments with real data
showed that ATREM (CSES et al., 1992) and the log residue
method (Rast et al., 1991) slightly decreased classification

accuracy.

NON-SINGULAR AFFINE TRANSFORMATIONS

Let x be an n by I vector containing the spectral
measurements of a pixel. A non-singular affine transformation is

any function of the data that can be written in the form

y = ATx + B where A is a constant, non-singular n by n matrix,

and B is an optional, constant n by 1 vector.
In the empirical line approach, LOWTRAN7, flat-field

correction, single spectrum method, and internal average
reflectance, the data in each spectral band is multiplied by a scale
factor and in some cases shifted by a constant offset. The same
scale factor and offset are used for every pixel in the scene.

Therefore, each of these transformations from the original radiance
data x, to the estimate of reflectance y, can be written as

y = ATx + B where A is a diagonal matrix whose elements are the
scale factors for each band, and B is a vector of the offsets for each
band. Since the determinant of a diagonal matrix is the product of

the diagonal elements, the determinant of A will be non-zero if all
the scale factors are non-zero, which implies that A is non-

singular. Thus the empirical line approach, LOWTRAN7, flat-field
correction, single spectrum method, and internal average
reflectance are non-singular affine transformations.

GAUSSIAN MAXIMUM LIKELIHOOD CLASSIFICATION

Next we show that non-singular affine transformations have
no effect on Gaussian maximum likelihood classification. The
decision rule in this case is to label the sample x as class j if the

density of class j has the highest likelihood value of any of the

classes: Choose o)j if argmax[px(xlo_i) ] = j
1
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taxi is the mean vector of class i, and Zxi is the covariance matrix
of class i. Suppose a non-singular affine transformation is applied

to the data: y = ATx + B. The mean vector of class i in the

transformed data y is my i = ATmxi + B, the covariance matrix is

Y'yi = ATY'xl A , and the density is
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Note that the value of the density of the transformed data y is

simply the value of density of the original data x divided by a
positive number. Since the density of each class is divided by the
same positive number, the class with the largest likelihood value in
the original data x will also have the largest likelihood value in the
transformed data y. Therefore the classification of the vector x and

y is the same, which implies that a non-singular affine
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transformation has no effect on the results of the classification.

DISCRIMINANT ANALYSIS

Discriminant analysis (Fukunaga, 1990) is a feature extraction
method that finds a linear combination of the original features that
maximizes the separation of the classes. Next we show that if the
original data x is changed by a non-singular affine transformation,
the discriminant vectors will also be changed by a non-singular
affine transformation. Therefore, if the discriminant vectors are

classified using a Gaussian maximum likelihood classifier, it will
make no difference whether the original data or the transformed
data is used.

Let L be the number of classes and Pi be the a priori

probability that class i will occur. The global mean is defined as
L

_plmxi, the between-class covariance matrix is defined asmxo

i=t

L

Exb=_pi(mxi-mxo)(mxi-mxo) T, and-the within-class

i=l

L

covariance matrix is defined as Exw = _pi_xi. Each eigenvalue
i=l

_"xi and the corresponding eigenvector exi of ZxlwZxb satisfies

-I

(_xw_xb- _,xiI)exi =0. (1)
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Since the rank of ExwExb is L-l, there are L-1 eigenvectors whose

eigenvalues are non-zero. Let _x = [exl ex2"-'ex(L-l)] be a matrix

whose columns are the L-1 eigenvectors. The L-1 by 1

discriminant vectors are defined as z x = _xTx.

Now consider the effect of a non-singular affine

transformation y = ATx+B. Using the transformed data, the

global mean, the between-class covariance, and the within-class
covariance are as follows.

L L

mYo = _plmy ' = _pi( ATmx ,+B)=ATmxo +B
i=l i=l

L

7"yb = _ pi(myi -- myo)(myi - myo) T
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The eigenvectors and eigenvalues satisfy
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Comparing equations (l) and (2), we see that the affine

transformation did not change the eigenvalues: _.yi = _.xl. Also,

each eigenvector from the transformed data is a simple function of

the eigenvector from the original data: eyi =A-texi. Let

(:_)y=[ey 1 ey2...ey(L_t)] be a matrix whose columns are the
I.. .a

eigenvectors. The discriminant vectors of the transformed data are

Zy = (/)Ty

= [A-lexl A-lex2...A-lex(L_l)]T(ATx + B)
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Note that the discriminant vectors of the transformed data Zy

are simply the discriminant vectors of the original data z x plus a

constant offset. Since adding a constant offset is a non-singular
affine transformation (where A=I), the Gaussian maximum
likelihood classification of the discriminant vectors will be the

same regardless of whether the original data or the transformed
data is used.

EXPERIMENTS USING ATREM AND LOG RESIDUE

In the ATREM and log residue methods, the transformation is
not constant across the scene. For example in ATREM, the amount
of water vapor in each pixel is estimated from the values of the
data near the water absorption bands, and this estimate is used in
the transformation of that pixel. In the log residue method, each
pixel spectrum is divided by the spectral average of that pixel.
Since the transformation for each pixel depends on the value of the
pixel, these transformations are not affine and, and so they may or
may not effect classification accuracy.

In order to evaluate the effect of the ATREM and log residue
transforms on classification accuracy, experiments were performed
with real AVIRIS data. Pixels whose class was known were

selected from the radiance data. A certain percentage (12.5, 25, or
50%) of these pixels were selected at random to be training
samples, and the rest: were used as test samples. The training
samples were used to compute the discriminant eigenvectors and to
train a Gaussian maximum likelihood classifier. The discriminant
vectors were extracted from the test samples and classified. The
average classification accuracy for 10 trials using random training
sets was computed. Then the whole experiment was repeated using
the reflectance data and identical training sets. The details of each

experiment and the average classification accuracy are presented
below.

Effect Of ATREM On Classification Accuracy
Experiments were performed with ATREM data from two

sites: Jasper Ridge, California, and Tippecanoe County, Indiana.
The 1992 AVIRIS radiance data taken over Japer Ridge was
converted to reflectance using the ATREM program. Classes from
this site were identified by comparing the scene to a ground cover
map made from aerial photographs (Gamon et al., 1993). In all,
3207 pixels were selected from the following classes: evergreen
woodland, serpentine grassland, greenstone grassland, deciduous
woodland, chaparral, and water. The 193 spectral bands (0.40-1.34,
1.43-1.80, and 1.95-2.471xm) outside the water absorption bands
were used, and the average classification accuracy using 12.5, 25,
and 50% of the pixels for training samples is shown in Figure 1.
Note that in the trials, the average classification accuracy was
slightly lower for the ATREM data than for the original radiance
data.
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The 1992 AVIRIS scene taken over Tippecanoe County,
Indiana was also processed using the ATREM program. Ground
observations were used to identify a total of 2521 pixels from the

following classes: beans with no residue, beans with corn residue,
corn with no residue, corn with bean residue, corn with wheat
residue, and wheat with no residue. The spectral bands used (0.42-
1.34, 1.43-1.80, and 1.95-2.471.tm) were outside the water
absorption bands and totaled 191 bands. Again, the average
classification accuracy was slightly lower for the ATREM data
than for the original radiance data (see Figure 2).
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Effect Of Log Residue On Classification Accuracy
The log residue transform was computed using the 1992

AVIRIS scene taken over Cuprite, Nevada. Four of the classes

(alunite, buddingtonite, kaolinite, and quartz) had easily
identifiable absorption features and were identified by comparing

the log residue spectrum to laboratory reflectance curves (Goetz et
al., 1985). The classes alluvium, argillized, tuff, and playa were

identified by comparing the scene to a geology map produced from
ground observations (Abrams et al., 1977, and Kruse et al., 1990).
The experiment used 2744 pixels and 191 bands (0.40-1.34, 1.43-
1.80, 1.96-2.461.tm). The average classification accuracy was
slightly lower for the log residue data than for the radiance data
(see Figure 3).
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When only the 4 classes which were identified using the log
residue method and the 31 bands (2.05-2.351.tm) surrounding the
absorption features of these minerals were used, the average
accuracy of the log residue data was slightly higher than that of the
original radiance data (see Figure 4). This improvement did not
occur, however, when the other classes and the other bands were
used.
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SIMILARITY OF CLASSIFICATIONS

Another experiment was performed with each of the three
scenes to measure how many pixels would be classified differently
when the reflectance data was used instead of the radiance data. In

this experiment, all the samples of known class were used to train a
Gaussian maximum likelihood classifier, and a large portion of the
scene was classified. The percentage of pixels whose classification
differed between the radiance classification and the reflectance

classification was 2.7% (Jasper Ridge), 8.4% (Tippecanoe
County), and 5.6% (Cuprite).

CONCLUSION

Although an estimate of the reflectance of a pixel can be quite
useful in labeling training samples for a maximum likelihood
classifier, it matters little if the actual classification is performed on
the original radiance data or data that has been transformed to
approximate reflectance. This result suggests that Gaussian
maximum likelihood classification is insensitive to the variations

caused by the solar curve and the atmosphere, so that attempts to
correct for these changes are unnecessary.
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